Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities.

نویسندگان

  • Dina Uzri
  • Lee Gehrke
چکیده

Cytoplasmic viral RNAs with 5' triphosphates (5'ppp) are detected by the RNA helicase RIG-I, initiating downstream signaling and alpha/beta interferon (IFN-alpha/beta) expression that establish an antiviral state. We demonstrate here that the hepatitis C virus (HCV) 3' untranslated region (UTR) RNA has greater activity as an immune stimulator than several flavivirus UTR RNAs. We confirmed that the HCV 3'-UTR poly(U/UC) region is the determinant for robust activation of RIG-I-mediated innate immune signaling and that its antisense sequence, poly(AG/A), is an equivalent RIG-I activator. The poly(U/UC) region of the fulminant HCV JFH-1 strain was a relatively weak activator, while the antisense JFH-1 strain poly(AG/A) RNA was very potent. Poly(U/UC) activity does not require primary nucleotide sequence adjacency to the 5'ppp, suggesting that RIG-I recognizes two independent RNA domains. Whereas poly(U) 50-nt or poly(A) 50-nt sequences were minimally active, inserting a single C or G nucleotide, respectively, into these RNAs increased IFN-beta expression. Poly(U/UC) RNAs transcribed in vitro using modified uridine 2' fluoro or pseudouridine ribonucleotides lacked signaling activity while functioning as competitive inhibitors of RIG-I binding and IFN-beta expression. Nucleotide base and ribose modifications that convert activator RNAs into competitive inhibitors of RIG-I signaling may be useful as modulators of RIG-I-mediated innate immune responses and as tools to dissect the RNA binding and conformational events associated with signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling

UNLABELLED Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not be...

متن کامل

Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5

Most organisms rely on innate immune receptors to recognize conserved molecular structures from invading microbes. Two essential innate immune receptors, RIG-I and MDA5, detect viral double-stranded RNA in the cytoplasm. The inflammatory response triggered by these RIG-I-like receptors (RLRs) is one of the first and most important lines of defense against infection. RIG-I recognizes short RNA l...

متن کامل

Uridine Composition of the Poly-U/UC Tract of HCV RNA Defines Non-Self Recognition by RIG-I

Viral infection of mammalian cells triggers the innate immune response through non-self recognition of pathogen associated molecular patterns (PAMPs) in viral nucleic acid. Accurate PAMP discrimination is essential to avoid self recognition that can generate autoimmunity, and therefore should be facilitated by the presence of multiple motifs in a PAMP that mark it as non-self. Hepatitis C virus...

متن کامل

In Vivo Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells

RIG-I-like receptors (RLRs: RIG-I, MDA5 and LGP2) play a major role in the innate immune response against viral infections and detect patterns on viral RNA molecules that are typically absent from host RNA. Upon RNA binding, RLRs trigger a complex downstream signaling cascade resulting in the expression of type I interferons and proinflammatory cytokines. In the past decade extensive efforts we...

متن کامل

Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5

RIG-I and MDA5 sense virus-derived short 5'ppp blunt-ended or long dsRNA, respectively, causing interferon production. Non-signaling LGP2 appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. Co-crystal structures of chicken (ch) LGP2 with dsRNA display a fully or semi-closed conformation depending on the presence or absence of nucleotide. LGP2 caps blunt, 3' or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 83 9  شماره 

صفحات  -

تاریخ انتشار 2009